Title Image

The faces of Dynamic42: Thomas Sommermann

The faces of Dynamic42: Thomas Sommermann

Lately Thomas Sommermann joined Dynamic42. Thomas is an experienced scientist in the field of immunology and shares our vision regarding the enormous potential of the organ-on-chip technology. Therefore, we are very happy to have him support our research team!

From Nuremberg to Jena via Cambridge and Berlin

Thomas joins us from the Hans Knöll Institute (HKI), where he was a senior postdoc and head of the cell sorting facility at the Infection Immunology department of Professor C. Zielinski. In his role he performed spectral, high-dimensional FACS (Fluorescence Activated Cell Sorter) analyses and sorting of immune cells especially human T cells.

 

Thomas began his carrier at the Friedrich-Alexander University of Nuremberg-Erlangen, where he studied biology with a focus on molecular cell biology in the field of colorectal cancer.

 

After successfully completing his diploma, he was offered a PhD-student fellowship at Harvard University in Cambridge, USA. In his PhD work Thomas addressed cell signaling and cell metabolism of lymphomas associated with Epstein-Barr virus.

 

Thomas’ then joined the department of Immune Regulation and Cancer at the Max Delbrück Center in Berlin. There he continued his research on lymphomas and the Epstein-Barr virus using transgenic mouse models.

Diversification of immune cell types: Thomas’ goals at Dynamic42

Having worked extensively with mouse models, Thomas is sure that there are limitations to translating findings from animal research into the human system, creating a fundamental need to develop novel complementary and alternative methods to animal testing.

``I strongly believe that organ chip technology has the potential to provide more reliable preclinical data than current animal-based experiments.``

Thomas will now promote the efforts of Dynamic42 to further integrate various immune cell populations into organ-chips. Immunocompetent organ models better mimic real body physiology and will allow D42 to address the effects of treatment approaches on immune cells within the target tissue.

More interesting articles:

Blog

One crucial factor that plays a pivotal role in the success of organ-on-cip models is immunocompetence. In this blog post, we delve into the significance of immunocompetence in organ-on-chip models and how it opens new avenues for advancing medical research.

Read More
Blog

Learn the skills to integrate organ-on-chip technology into your lab work with the Dynamic42 Academy. If this resonates with you, this blog will help you to understand if our organ-on-chip class is for you. We will give you a deep dive into the reasons to attend our course, what we teach in the course, and what past participants have to say.

Read More
Blog

A comprehensive summary of available organ-on-chip courses, detailing the provider, content and location. Organ-on-chip technology is an amazing technique to model human, physiological mechanisms on a small scale without the use of animal models. If you as a researcher are versed in cell culture, learning how to create your own organ models is absolutely feasible in just a few months.

Read More